资源类型

期刊论文 332

会议视频 2

年份

2023 9

2022 16

2021 22

2020 8

2019 20

2018 16

2017 10

2016 9

2015 18

2014 12

2013 10

2012 13

2011 22

2010 28

2009 29

2008 26

2007 32

2006 5

2005 3

2004 3

展开 ︾

关键词

燃烧特性 3

高压 3

内燃机 2

加压浸出 2

压力容器技术 2

工程水压爆破 2

循环流化床 2

泥水盾构 2

燃烧性能 2

生物质 2

Al-Cr203体系 1

Al@AP/PVDF纳米复合材料 1

CO2捕集 1

COVID-19 1

DX桩 1

NOx 1

S 特性 1

S型钢丝研制 1

X射线成像 1

展开 ︾

检索范围:

排序: 展示方式:

Combustion instability detection using the wavelet detail of pressure fluctuations

JI Junjie, LUO Yonghao

《能源前沿(英文)》 2008年 第2卷 第1期   页码 116-120 doi: 10.1007/s11708-008-0019-0

摘要: A combustion instability detection method that uses the wavelet detail of combustion pressure fluctuations is put forward. To confirm this method, combustion pressure fluctuations in a stoker boiler are recorded at stable and unstable combustion with a pressure transducer. Daubechies one-order wavelet is chosen to obtain the wavelet details for comparison. It shows that the wavelet approximation indicates the general pressure change in the furnace, and the wavelet detail magnitude is consistent with the intensity of turbulence and combustion noise. The magnitude of the wavelet detail is nearly constant when the combustion is stable, however, it will fluctuate much when the combustion is unstable.

关键词: comparison     wavelet approximation     pressure transducer     general pressure     consistent    

Typical off-design analytical performances of internal combustion engine cogeneration

Xiaohong HE, Ruixian CAI

《能源前沿(英文)》 2009年 第3卷 第2期   页码 184-192 doi: 10.1007/s11708-009-0007-z

摘要: Based on experimental data, typical off-design characteristic curves with corresponding formulas of internal combustion engine (ICE) are summarized and investigated. In combination with analytical solution of single-pressure heat recovery steam generator (HRSG) and influence of ambient pressure on combined heat and power (CHP) system, off-design operation regularities of ICE cogeneration are analyzed. The approach temperature difference Δ , relative steam production and superheated steam temperature decrease with the decrease in engine load. The total energy efficiency, equivalent exergy efficiency and economic exergy efficiency first increase and then decrease. Therefore, there exists an optimum value, corresponding to ICE best efficiency operating condition. It is worth emphasizing that Δ is likely to be negative in low load condition with high design steam parameter and low ICE design exhaust gas temperature. Compared with single shaft gas turbine cogeneration, Δ in ICE cogeneration is more likely to be negative. The main reason for this is that the gas turbine has an increased exhaust gas flow with the decrease in load; while ICE is on the contrary. Moreover, ICE power output and efficiency decrease with the decrease in ambient pressure. Hence, approach temperature difference, relative steam production and superheated steam temperature decrease rapidly while the cogeneration efficiencies decrease slightly. It is necessary to consider the influence of ambient conditions, especially the optimization of ICE performances at different places, on cogeneration performances.

关键词: internal combustion engine (ICE)     cogeneration     heat recovery steam generator (HRSG)     off-design     superheated steam     saturated steam     ambient pressure    

Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

HUANG Yongcheng, WANG Shangxue, ZHOU Longbao

《能源前沿(英文)》 2008年 第2卷 第3期   页码 261-267 doi: 10.1007/s11708-008-0062-x

摘要: Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NO and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NO emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

关键词: combustion pressure     further     HC     operation     single-cylinder    

Numerical study of EGR effects on reducing the pressure rise rate of HCCI engine combustion

Gen CHEN, Norimasa IIDA, Zuohua HUANG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 376-385 doi: 10.1007/s11708-010-0118-6

摘要: The effects of the inert components of exhaust gas recirculation (EGR) gas on reducing the pressure rise rate of homogeneous charge compression ignition engine combustion were investigated numerically by utilizing the CHEMKIN II package and its SENKIN code, as well as Curran’s dimethyl ether reaction scheme. Calculations were conducted under constant volume combustion and engine combustion (one compression and one expansion only, respectively) conditions. Results show that with constant fuel amount and initial temperature and pressure, as EGR ratio increases, combustion timings are retarded and the duration of thermal ignition preparation extends non-linearly; peak values of pressure, pressure rising rate (PRR), and temperature decrease; and peak values of heat release rate in both low temperature heat release (LTHR) and high temperature heat release decrease. Moreover, maximum PRR decreases as CA50 is retarded. With constant fuel amount, mixtures with different EGR ratios can obtain the same CA50 by adjusting the initial temperature. Under the same CA50, as EGR ratio increases, the LTHR timing is advanced and the duration of thermal ignition preparation is extended. Maximum PRR is almost constant with the fixed CA50 despite the change in EGR ratio, indicating that the influence of EGR dilution on chemical reaction rate is offset by other factors. Further investigation on the mechanism of this phenomenon is needed.

关键词: HCCI engine     combustion     EGR     DME     CA50     PRR    

Combustion characteristics of SI engine fueled with methanol-gasoline blends during cold start

SONG Ruizhi, LIU Shenghua, LIANG Xiaoqiang, Tiegang H U

《能源前沿(英文)》 2008年 第2卷 第4期   页码 395-400 doi: 10.1007/s11708-008-0081-7

摘要: A 3-cylinder port fuel injection (PFI) engine fueled with methanol-gasoline blends was used to study combustion and emission characteristics. Cylinder pressure analysis indicates that engine combustion is improved when methanol is added to gasoline. With the increase of methanol, the flame developing period and the rapid combustion period are shortened, and the indicated mean effective pressure increases during the first 50 cycles. Meanwhile, a novel quasi-instantaneous sampling system was designed to measure engine emissions during cold start and warm-up. The results at 5°C show that unburned hydrocarbon (UHC) and carbon monoxide (CO) decrease remarkably. Hydrocarbon (HC) reduces by 40% and CO by 70% when fueled with M30 (30% methanol in volume). The exhaust gas temperature is about 140°C higher at 200 s after operation compared with that of gasoline.

关键词: combustion     3-cylinder     indicated     Cylinder pressure     emission    

Development of a simplified n-heptane/methane model for high-pressure direct-injection natural

Jingrui LI, Haifeng LIU, Xinlei LIU, Ying YE, Hu WANG, Xinyan WANG, Hua ZHAO, Mingfa YAO

《能源前沿(英文)》 2021年 第15卷 第2期   页码 405-420 doi: 10.1007/s11708-021-0718-3

摘要: High-pressure direct-injection (HPDI) of natu-ral gas is one of the most promising solutions for future ship engines, in which the combustion process is mainly controlled by the chemical kinetics. However, the employment of detailed chemical models for the multi-dimensional combustion simulation is significantly expensive due to the large scale of the marine engine. In the present paper, a reduced -heptane/methane model consisting of 35-step reactions was constructed using multiple reduction approaches. Then this model was further reduced to include only 27 reactions by utilizing the HyChem (Hybrid Chemistry) method. An overall good agreement with the experimentally measured ignition delay data of both -heptane and methane for these two reduced models was achieved and reasonable predictions for the measured laminar flame speeds were obtained for the 35-step model. But the 27-step model cannot predict the laminar flame speed very well. In addition, these two reduced models were both able to reproduce the experimentally measured in-cylinder pressure and heat release rate profiles for a HPDI natural gas marine engine, the highest error of predicted combustion phase being 6.5%. However, the engine-out CO emission was over-predicted and the highest error of predicted NO emission was less than 12.9%. The predicted distributions of temperature and equivalence ratio by the 35-step and 27-step models are similar to those of the 334-step model. However, the predicted distributions of OH and CH O are significantly different from those of the 334-step model. In short, the reduced chemical kinetic models developed provide a high-efficient and dependable method to simulate the characteristics of combustion and emissions in HPDI natural gas marine engines.

关键词: high-pressure direct-injection     natural gas     chemical kinetics     combustion modelling     marine engine    

Combustion characteristics and kinetics of bio-oil

Ruixia ZHANG, Zhaoping ZHONG, Yaji HUANG

《化学科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 119-124 doi: 10.1007/s11705-009-0068-x

摘要: The combustion characteristics of bio-oils derived from rice husk and corn were studied by thermogravimetry analysis. According to the thermogravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA) curves of bio-oils in air and nitrogen atmosphere, we analyzed the combustion characteristics of different kinds of bio-oils in different atmospheres and worked out the combustion kinetics parameters of the bio-oil, providing reliable base data for the burning of bio-oil. The thermogravimetry indicated that the combustion process of bio-oil was divided into three stages. At the same time, the combustion process can be described by different order reaction models, and with the method of Coats-Redfern, the activation energy and frequency factor of different kinds of bio-oils were obtained.

关键词: bio-oil     combustion characteristics     combustion kinetics    

Numerical simulation of laminar premixed combustion in a porous burner

ZHAO Pinghui, CHEN Yiliang, LIU Minghou, DING Min, ZHANG Genxuan

《能源前沿(英文)》 2007年 第1卷 第2期   页码 233-238 doi: 10.1007/s11708-007-0032-8

摘要: Premixed combustion in porous media differs substantially from combustion in free space. The interphase heat transfer between a gas mixture and a porous medium becomes dominant in the premixed combustion process. In this paper, the premixed combustion of CH

关键词: interphase     mixture     dominant     Premixed combustion     premixed combustion    

Entropy production analysis of swirling diffusion combustion processes

Deodat MAKHANLALL, Linhua LIU,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 326-332 doi: 10.1007/s11708-009-0058-1

摘要: A critical factor in the design of combustion systems for optimum fuel economy and emission performance lies in adequately predicting thermodynamic irreversibilities associated with transport and chemical processes. The objective of this study is to map these irreversibilities in terms of entropy production for methane combustion. The numerical solution of the combustion process is conducted with the help of a Fluent 6.1.22 computer code, and the volumetric entropy production rate due to chemical reaction, viscous dissipation, and mass and heat transfer are calculated as post-processed quantities with the computed data of the reaction rates, fluid velocity, temperature and radiative intensity. This paper shows that radiative heat transfer, which is an important source of entropy production, cannot be omitted for combustion systems. The study is extended by conducting a parametric investigation to include the effects of wall emissivity, optical thickness, swirl number, and Boltzmann number on entropy production. Global entropy production rates decrease with the increase in swirl velocity, wall emissivity and optical thickness. Introducing swirling air into the combustion system and operations with the appropriate Boltzmann number reduces the irreversibility affected regions and improves energy utilization efficiency.

关键词: entropy-based design     radiation transfer     swirl     magnussen combustion-model    

Study on combustion characteristics of blended coals

LI Yonghua, WANG Chunbo, CHEN Hongwei

《能源前沿(英文)》 2007年 第1卷 第1期   页码 96-100 doi: 10.1007/s11708-007-0010-1

摘要: Power plants in China have to burn blended coal instead of one specific coal for a variety of reasons. So it is of great necessity to investigate the combustion of blended coals. Using a test rig with a capacity of 640 MJ/h with an absolute milling system and flue gas online analysis system, characteristics such as burnout, slag, and pollution of some blended coals were investigated. The ratio of coke and slag as a method of distinguishing coal slagging characteristic was introduced. The results show that the blending of coal has some effect on NO but there is no obvious rule. SO emission can be reduced by blending low sulfur coal.

关键词: combustion     capacity     variety     blended     burnout    

Recent progress in electric-field assisted combustion: a brief review

《能源前沿(英文)》 2022年 第16卷 第6期   页码 883-899 doi: 10.1007/s11708-021-0770-z

摘要: The control of combustion is a hot and classical topic. Among the combustion technologies, electric-field assisted combustion is an advanced techno-logy that enjoys major advantages such as fast response and low power consumption compared with thermal power. However, its fundamental principle and impacts on the flames are complicated due to the coupling between physics, chemistry, and electromagnetics. In the last two decades, tremendous efforts have been made to understand electric-field assisted combustion. New observations have been reported based on different combustion systems and improved diagnostics. The main impacts, including flame stabilization, emission reduction, and flame propagation, have been revealed by both simulative and experimental studies. These findings significantly facilitate the application of electric-field assisted combustion. This brief review is intended to provide a comprehensive overview of the recent progress of this combustion technology and further point out research opportunities worth investigation.

关键词: electric field     combustion     flame stabilization     emission reduction     flame propagation    

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1649-1676 doi: 10.1007/s11705-023-2324-x

摘要: With the rapid development of industry, volatile organic compounds (VOCs) are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health. Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions. This review first introduces the hazards of VOCs, their treatment technologies, and summarizes the treatment mechanism issues. Next, the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded, with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications, and on the treatment of different VOCs. The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed. This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.

关键词: perovskite oxides     volatile organic compounds     catalytic combustion     reaction mechanism    

Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine

K. RAJKUMAR, P. GOVINDARAJAN

《能源前沿(英文)》 2011年 第5卷 第4期   页码 398-403 doi: 10.1007/s11708-011-0157-7

摘要: In the present experiment, a computerized single cylinder diesel engine with a data acquisition system was used to study the effects of oxygen enriched combustion technology (OECT) on the performance characteristics. The use of different levels of oxygen-enriched air was compared with respect to percentage load. Increasing the oxygen content in the air leads to faster burn rates and increases the combustibility at the same stoichiometry (oxygen-to-fuel ratio). These effects have the potential to increase the thermal efficiency and specific power output of a diesel engine. The power increases considerably with oxygen enrichment. In addition, oxygen enrichment can also be considered as a way to reduce the sudden loss in power output when the engine operates in a high load condition. Assessed high combustion temperature from the oxygen enriched combustion leads to high combustion efficiency. OECT reduces the volume of flue gases and reduces the effects of greenhouse effects. Engine tests were conducted in the above said engine for different loads and the following performance characteristics like brake power (BP), specific fuel consumption (SFC), mean effective pressure, brake thermal efficiency, mechanical efficiency, and exhaust gas temperature were studied. The objective of this paper is to address, in a systematic way, the key technical issues associated with applying OECT to single cylinder diesel engines.

关键词: oxygen enriched combustion     exhaust gas temperature     brake power (BP)     specific fuel consumption (SFC)    

Effect of Fe on NO release during char combustion in air and O

Ying GU, Xiaowei LIU, Bo ZHAO, Minghou XU

《能源前沿(英文)》 2012年 第6卷 第2期   页码 200-206 doi: 10.1007/s11708-012-0181-2

摘要: The chemistry of char was probed by studying nitrogen release under the reactions with air and oxy-fuel combustion. The experiments were conducted in a drop tube furnace and a fixed bed flow reactor. NO was observed during those experiments. The results show that the particle size of char generated at 1073 K in CO is larger than that in N . However, at 1573 K, it is smaller in CO atmosphere due to particle breaking by gasification of char and CO . The Fe addition increases the NO conversion ratio, and the effect of Fe rises steeply with the process going until it becomes stable in the end. The results also indicate that the release of NO increases more significantly with the Fe addition in oxy-fuel environment.

关键词: NO     Fe     char     combustion     CO2    

Influence of temperature on cam-tappet lubrication in an internal combustion engine

CHANG Qiuying, YANG Peiran, WANG Jing, CHEN Quanshi

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 489-492 doi: 10.1007/s11465-007-0085-8

摘要: The transient thermo-elastohydrodynamic (TEHL) lubrication simulation and isothermal elastohydrodynamic (EHL) simulation were performed on the exhausting cam-tappet friction pair of an internal combustion engine. Although by employing the two models the center pressure, the thickness of the lubricant film and friction coefficient obtained were similar in the changing trend during a rotating cycle, the parameters make a great difference, especially for the thickness of the lubricant film; the TEHL was four times thicker than the EHL. These results show that the temperature should not be neglected in the study of the lubrication of cam-tappet pairs.

关键词: coefficient     combustion     isothermal elastohydrodynamic     temperature     thickness    

标题 作者 时间 类型 操作

Combustion instability detection using the wavelet detail of pressure fluctuations

JI Junjie, LUO Yonghao

期刊论文

Typical off-design analytical performances of internal combustion engine cogeneration

Xiaohong HE, Ruixian CAI

期刊论文

Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

HUANG Yongcheng, WANG Shangxue, ZHOU Longbao

期刊论文

Numerical study of EGR effects on reducing the pressure rise rate of HCCI engine combustion

Gen CHEN, Norimasa IIDA, Zuohua HUANG,

期刊论文

Combustion characteristics of SI engine fueled with methanol-gasoline blends during cold start

SONG Ruizhi, LIU Shenghua, LIANG Xiaoqiang, Tiegang H U

期刊论文

Development of a simplified n-heptane/methane model for high-pressure direct-injection natural

Jingrui LI, Haifeng LIU, Xinlei LIU, Ying YE, Hu WANG, Xinyan WANG, Hua ZHAO, Mingfa YAO

期刊论文

Combustion characteristics and kinetics of bio-oil

Ruixia ZHANG, Zhaoping ZHONG, Yaji HUANG

期刊论文

Numerical simulation of laminar premixed combustion in a porous burner

ZHAO Pinghui, CHEN Yiliang, LIU Minghou, DING Min, ZHANG Genxuan

期刊论文

Entropy production analysis of swirling diffusion combustion processes

Deodat MAKHANLALL, Linhua LIU,

期刊论文

Study on combustion characteristics of blended coals

LI Yonghua, WANG Chunbo, CHEN Hongwei

期刊论文

Recent progress in electric-field assisted combustion: a brief review

期刊论文

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

期刊论文

Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine

K. RAJKUMAR, P. GOVINDARAJAN

期刊论文

Effect of Fe on NO release during char combustion in air and O

Ying GU, Xiaowei LIU, Bo ZHAO, Minghou XU

期刊论文

Influence of temperature on cam-tappet lubrication in an internal combustion engine

CHANG Qiuying, YANG Peiran, WANG Jing, CHEN Quanshi

期刊论文